Remote control for a ceiling fan — Hunter Fan Company

Remote control for a ceiling fan - Hunter Fan Company

1. A remote control for a ceiling fan comprising:

power supply means for supplying power to said remote control;

keyboard means for inputting ceiling fan control commands;

control means coupled to said keyboard means and said power supply means for accepting the ceiling fan control commands and outputting a series of ceiling fan control signals;

transmitter means coupled to said control means and said power supply means for transmitting the control signals to the ceiling fan; and

animated fan display means coupled to said control means for displaying an animated pictorial representation of the ceiling fan;

wherein said animated fan display means is animated to provide an appearance of rotation in a direction consistent with a direction of rotation of the ceiling fan as determined from the ceiling fan control commands from said control means.

2. The remote control of claim 1 wherein said animated fan display means is animated to provide an appearance of rotation in a direction and speed related to a direction and speed of rotation of the ceiling fan as determined from the ceiling fan control commands from said control means.

3. A remote controlled ceiling fan comprising:

a ceiling fan;

a remote control comprising:

first power supply means for supplying power to said remote control;

keyboard means for inputting ceiling fan control commands;

first control means coupled to said keyboard means and said first power supply means for accepting the ceiling fan control commands and outputting a series of ceiling fan control signals;

transmitter means coupled to said first control means and said first power supply means for transmitting said control signals to the ceiling fan; and animated fan display means coupled to said first control means for displaying an animated pictorial representation of said ceiling fan to provide an appearance of rotation of said ceiling fan as determined from the ceiling fan control signals from said first control means, and

fan control means coupled to said ceiling fan and said remote control, said fan control means comprising:

second power supply means for providing power to said fan control means;

receiver means coupled to said second power supply means for receiving the ceiling fan control signals from said remote control and outputting ceiling fan control commands; and

second control means coupled to said second power supply means and said receiver means for receiving the ceiling fan control commands and controlling said ceiling fan.

4. The remote controlled ceiling fan of claim 3, wherein said remote control further comprises:

a load line and a neutral line for supplying power to said ceiling fan.

5. The remote controlled ceiling fan of claim 4, wherein said first power supply means is connected in series with said load line and said ceiling fan.

6. The remote controlled ceiling fan of claim 5 wherein said first power supply means further comprises:

triac means coupled in series with said ceiling fan and said load line for providing a voltage drop.

7. The remote controlled ceiling fan of claim 6 wherein said first power supply further comprises:

rectifier means, coupled to said triac means, for rectifying said voltage drop provided by said triac means and outputting a rectified voltage, and

regulator means, coupled to said rectifier means, for regulating and filtering said rectified voltage and outputting a regulated voltage.

8. The remote controlled ceiling fan of claim 3 wherein said first control means comprises a microprocessor.

9. The remote controlled ceiling fan of claim 3, wherein said remote control further comprises:

display means, coupled to said first power supply means and said first control means, for displaying the ceiling fan commands.

10. The remote controlled ceiling fan of claim 9, wherein said first control means further comprises a clock means for providing a clock signal.

11. The remote controlled ceiling fan of claim 10, said display means further comprising:

clock display means for displaying the clock signal.

12. The remote controlled ceiling fan of claim 3, wherein said animated fan display means is animated to provide an appearance of rotation in a direction consistent with a direction of rotation of said ceiling fan as determined from the ceiling fan control signals from said first control means.

13. The remote controlled ceiling fan of claim 12, wherein said animated fan display means is animated to provide an appearance of rotation in a direction and speed consistent with a direction and speed of rotation of said ceiling fan.

14. The remote controlled ceiling fan of claim 3, wherein said ceiling fan further comprises a light fixture and the ceiling fan control commands input to said keyboard means further comprise light fixture control commands and the ceiling fan control signals output from said first control means further comprise light fixture control signals.

15. The remote controlled ceiling fan of claim 14, further comprising:

animated light display means for displaying an animated appearance of brightness consistent with the brightness of said light fixture as determined from the light fixture control commands from said first control means.

16. The remote controlled ceiling fan of claim 14, wherein said control means further comprises:

program means for storing a program for controlling operation of said light fixture.

17. The remote controlled ceiling fan of claim 3, wherein said control means further comprises:

program means for storing a program for controlling operation of the ceiling fan.

18. The remote controlled ceiling fan of claims 16 or 17, wherein said program means may be programmed with the fan control commands input from said keyboard means.

19. The remote controlled ceiling fan of claim 3, wherein said transmitter means further comprises:

infrared transmitter means, coupled to said transmitter means, for transmitting an infrared control signal; and

infrared receiver means for receiving infrared ceiling fan control signals transmitted by said infrared transmitter means and supplying the infrared ceiling fan control signals to said second control means.

20. In a control device for a ceiling fan, an animated display device comprising:

a plurality of fan blade display elements extending radially from a central point, said plurality of fan blade display elements grouped into at least a first and a second group; and

exciter means coupled to said plurality of fan blade display elements for selectively exciting said fan blade display elements to pictorially represent movement of said ceiling fan,

wherein said exciter means selectively excites said fan blade display elements to pictorially represent movement of said ceiling fan as determined from ceiling fan control signals from a said control device.

21. The animated fan display of claim 20, wherein said excited means excites said first group at a first time period and said second group at a second time period to provide an appearance of rotation of said fan blade display elements in a direction consistent with a direction of rotation of the ceiling fan as determined from commands received from said control device.

22. The animated fan display device of claim 21, wherein said exciter means excites said first group during said first time period and said second group during said second time period to provide an appearance of rotation of said fan blade display elements at a speed consistent with a speed of rotation of the ceiling fan.

23. In a control device for a ceiling fan including a light fixture, an animated light display device comprising:

animated light fixture display shaped substantially as a light fixture;

a plurality of animated ray display elements arranged radially from said light fixture display; and

exciter means coupled to said plurality of ray display elements for selectively exciting said light fixture display and said plurality of ray display elements to pictorially illumination of said light fixture,

wherein said exciter means selectively excites said light fixture display and said plurality of ray display elements to pictorially represent illumination of said light fixture as determined from ceiling light control signals from said control device.

24. The animated light display of claim 23, wherein said exciter means excites said light fixture display to indicate intensity of illumination of said light fixture as determined from ceiling light control signals from said control device.

25. The animated light display device of claim 24 wherein said exciter means excites said plurality of ray display elements during a first time period and not during a second time period and vice versa.

Description:

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is directed to a remote control for a combined ceiling fan and light fixture. Specifically, the present invention is directed to a remote control which may be used as a replacement for an existing wall switch and which provides for control of the ceiling fan and accompanying light fixture without any modification to the existing electrical wiring between the wall switch and the light fixture. In an alternative embodiment, the remote control may be an infrared or radio linked remote control communicating with the wall control discussed above, or communicating with a control mounted in the ceiling fan or accompanying light fixture. In either embodiment, the remote control may be equipped with a novel animated display depicting direction and/or speed of fan rotation as well as light intensity.

2. Description of the Prior Art

Ceiling fans known in the prior art provide for a variety of desired features. Specifically, modern ceiling fans may be controlled to operate at a plurality of different speeds from a relatively low speed to a high maximum speed. Low speeds may be desirable to provide for general air circulation and to eliminate «hot» or «cold» spots within a room. Higher speeds may be desirable for cooling effects (in summer) or to eliminate temperature gradients (in winter). In addition, the direction of rotation may generally be controlled to be in either one of two opposite directions. In the winter, it is generally desirable to have the fan turn in one direction (updraft) to circulate hot air away from the ceiling. In the summer, it may be desirable to have the fan turn in the opposite direction (downdraft) to provide a cooling effect on the occupants in the room.

Ceiling fans are often combined with a light fixture or fixtures with the intensity level of the light fixture(s) controlled from low levels to maximum high levels. Most ceiling fans are designed so that they may be installed in existing ceiling junction boxes, replacing existing light fixtures. In such an installation, shown in FIG. 1, there is generally a wall switch 101 switching load line 102 from circuit main 170 in the house. Switched load line 103 and neutral line 104 from circuit main 170 terminate in a ceiling junction box 105. A ceiling fan 106 with light fixture 180 is typically installed attached to junction box 105 in a similar manner as a standard light fixture. Because ceiling fan 106 must be adaptable to existing wiring in the house, fan speed switch 107, fan direction switch 108, and light intensity dimmer switch 109 are usually mounted in the switch housing attached to ceiling fan 106 itself.

Fan mounted switches 107, 108, and 109 may be preset to the desired levels of speed, direction, and light intensity, respectively, and wall switch 101 used to turn ceiling fan 106 and light fixture 180 to these preset levels.

The disadvantage of such an approach is that each time the user wishes to change the existing levels, a switch must be changed at ceiling fan 106. For example, during the daytime, it may be desirable to run ceiling fan 106 at a high speed and shut off light fixture 180 in order to cool the house. In the evening, it may be desirable to run ceiling fan 106 at a medium speed and turn light fixture 180 on to maintain an even temperature throughout the house and to provide illumination, respectively. At night, it may be desirable to run ceiling fan 106 at low speed and turn light fixture 180 off to maintain air circulation with a minimum of noise. If ceiling fan 106 is located at a sufficient distance above the floor, it may be necessary to use a step stool or ladder in order to reach fan mounted switches 107, 108, and 109 in order to change the speed or direction of ceiling fan 106 or the intensity of light fixture 180.

One way to overcome the disadvantages of the installation of FIG. 1 would be to install separate circuits to individual wall mounted switches for the fan speed, fan direction, and lighting control. While such an installation may be practical in new construction, in an existing home it would be necessary to remove portions of the ceiling and walls to run the additional wiring. In addition, in either new or existing construction, running additional wires involves additional expense and in some localities may require the services of a licensed electrician. Further, many ceiling fans are sold as owner-installed units with an easy to use installation kit. The complexities of house wiring are beyond the capabilities of most «do-it-yourselfers» and the length of wiring in each installation would be different, adding expense to the installation kit.

One prior art device which has been used to provide a partial solution to the above described problem of remotely controlling the operation of a ceiling fan is shown in U.S. Pat. No. 4,413,211 issued Nov. 1, 1983 to Fowler. This prior art Patent is directed towards a remote load selector which uses an existing wall switch to control a load by toggling the existing switch to provide for the selective application of power to multiple loads such as a combined ceiling fan and light fixture. The Fowler device has a number of limitations due to the fact that the user must apply power by manually operating the wall switch. For instance, the user may become confused as to which level the fan was previously switched to, making control difficult. In addition, the prior art load selector described above is generally limited in the number of control steps that can be realistically accomplished by the application and removal of power to the loads. For example, a typical ceiling fan may have three speeds in two separate directions, making a total of six different combinations of toggled signals that may be sent. If a light fixture is added to the fan, the number of combinations may be doubled to twelve. If the light fixture has more than one intensity setting, or if additional fan speeds are desired, the number of toggled combinations expands geometrically. The user may find himself toggling the wall switch repeatedly trying to find the proper combination of light intensity, fan speed, and fan direction.

Another prior art device which provides a partial solution to the above mentioned problem is the radio frequency remote control described in U.S. Pat. No. 4,548,544 to Angott. Angott shows a remote control for a ceiling fan with a hand held radio frequency transmitter and a radio frequency receiver located in the fan housing. The Angott device has the advantage in that it does not require a wall switch box, and thus may be practical in installations where a wall switch is not present. The disadvantage of the Angott unit is similar to that of the Fowler unit, in that only two switches are provided for the remote control, and thus the user must «toggle» the switches in order to switch between speeds, directions, and light intensities. Further, radio frequency controls have the disadvantage in that they are subject to electromagnetic interference and can only transmit a finite distance. If multiple fan installations are contemplated (i.e.—commercial installation, auditorium, etc.) then separate radio frequencies would be needed for each remote control in order to be able to control each fan individually.

The toggling mechanism of Fowler, the radio frequency remote control of Angott, and the prior art fan mounted controls (typically pull chain switches) all present an additional disadvantage in that it is not readily apparent to the user what speed the fan is turning when switching from one speed to the next. The fan blades are relatively large and heavy, consequently when the fan speed is changed, the fan accelerates or decelerates slowly due to the inertia of the fan blades, the mass of the moving parts of the a.c. induction motor, and the mass of the mechanism which drives the blades. This is a distinct shortcoming as the user must wait until the fan reaches the selected speed in order to determine which of the available speeds has been selected.

One prior art device which attempts to overcome the speed indication problem is that of U.S. Pat. No. 4,762,463, issued Aug. 9, 1988 to Yang. Yang uses a series of indicator lights located on the fan housing to indicate fan speed. The disadvantage of this indicator light arrangement is that the light may not be visible from the location of the wall mounted switch, and hence the user may not be able to see the indicator lights and determine what speed the fan is turning at. Further, in installations in high ceilings the indicator lights may be difficult to see without a step stool or ladder. In addition, the fan mounted indicator lights may not be aesthetically pleasing for some ornate fan designs which attempt to give the fan an historical look. The indicator lights may also be an annoyance in a bedroom installation where the lights would be quite visible to a user lying awake in bed. Finally, the Yang device does not solve the aforementioned problem of providing a fan speed and direction control combined with a lighting control at a remote location from the fan housing.

One prior art device which attempts to solve both the control and indicator problems of the devices discussed above, is the Hunter Model 22691 3-Speed Rotary Speed Control. The unit comprises a four position rotary switch and control module, packaged to replace an ordinary light switch in a standard wall box. The Model 22691 can be easily installed using existing wiring, and provides an easy to use four position switch (off, low, medium, and high). The Model 22691 rotary switch has an advantage over the Fowler device discussed above in that the rotary dial also serves as an indicator to indicate to the user what speed the fan is switched to. The disadvantage of the Model 22691 is that it cannot provide reversing control or lighting control. In fact the Model 22691 has one drawback due to the nature of the circuit design in that the fan and light cannot be used simultaneously unless the control is switched to the «high» setting.

Another prior art device which provides a partial solution to both of the aforementioned control and indication problems is shown in U.S. Pat. No. 4,719,466, issued Jan. 12, 1988 to Hart. Hart provides a remote control wall switch with three switches. One switch is a standard single pole double throw on/off switch for providing power to the fan. The other two switches are spring release toggle switches for the light and speed controls. The switches operate similarly to the device of Fowler discussed above in that the toggle switches are momentarily switched to change fan speed or light intensity. Fan direction is controlled by operating both toggle switches simultaneously. Fan speed is indicated by an audio tone generated by a tone generator located in the fan housing.

The disadvantages of the Hart device are several. First, the toggle switching technique can be confusing for the user, as the device discriminates between toggle of more than one second and less than one second. The user must have a degree of coordination in order to properly switch between speeds, light intensities, or fan directions. Further, if the user «overshoots» his desired fan speed, he must toggle through the range again, as in the Fowler device. Further, in order to ascertain the fan speed, the user must be able to hear and discern the audio tones. In applications where the fan is remotely located from the control (i.e.—auditorium) the audio tone may not be heard where the fan speed control switch is located (i.e.—backstage). In addition, background noise may obscure the audio tones, or the audio tones may themselves be a nuisance (i.e.—commercial installations in restaurants, shops, theaters, etc.). Finally, the audio tones must be discernible to the user. Those who are hearing impaired or «tone deaf» may not be able to discern what speed the fan is set at from the audio tones. Even those of perfect hearing may not be able to determine fan speed upon initial power up, as the tone may have to be compared to a previous tone to discern whether the speed is relatively high or low.

In both the Hart device and the Hunter Model 22691, the remote controls are relatively simple devices. Hart uses Silicon Controlled Rectifiers (SCRs) or Triacs to alter the zero-crossing point of the 60 Hz sinusoidal power line signal in order to communicate with a controller mounted in the ceiling fan itself. The Hunter Model 22691 uses a series of switched capacitors to alter fan speed. In all three instances, the remote controls do not contain a power supply per se, and thus cannot drive any sophisticated switching devices or displays. In the prior art devices of Hart and Fowler, the power supply is wired in parallel to the ceiling fan and located within the ceiling fan housing itself. The power supply is usually located in the ceiling fan because, as in the installation shown in FIG. 1, neutral line 104 does not pass through wall switch box 101, and hence there would be no return path for a power supply wired in parallel with ceiling fan 106 if it were located in wall switch box 101. As such, the prior art devices do not have a power supply capable of driving a sophisticated switching device or fan speed indicator, and instead rely on simple toggle switches or a battery powered radio transmitter to transmit signals to a fan mounted control.

The use of simple switching devices to control fan speed, direction and light intensity has a further disadvantage, as the user must physically be present to change fan speed, direction, or light intensity. The control devices discussed above do not have any provision for automatic control of ceiling fan 106 or light fixture 180 when the user is absent. The disadvantages of these devices is that if the user leaves ceiling fan 106 on when no one is present, ceiling fan 106 would be wasting energy. Further, when ceiling fan 106 is switched on in the evening, it may provide a comfortable breeze, however as night falls, and temperature drop, ceiling fan 106 may be circulating too much air for comfort, forcing the user to get out of bed and shut ceiling fan 106 off. In addition, it may be desirable to have light fixture 180 switched on and off occassionally if the user is not at home for several days in order to provide the appearance of occupancy and discourage burglars.

Wall mounted timer switches are generally known in the art. Such switches can be used to switch an appliance or light off after a predetermined period. The disadvantage of a simple timer switch is that it merely shuts off all power to an appliance. More sophisticated known timer switches may have an internal clock to switch an appliance on or off at predetermined intervals.

For a ceiling fan, however, it may be desirable to reduce fan speed or reverse fan direction after a predetermined amount of time in order to maintain comfort in a room. In addition it may be desirable to switch light fixture 180 independently of ceiling fan 106. Further, it may be desirable to turn ceiling fan 106 off or on, change fan speed, or change fan direction at a predetermined interval or at a predetermined temperature. A simple timer switch does not provide independent control of fan speed, direction or light intensity, nor does it provide a display of fan speed, direction or light intensity. In addition, many prior art timer switches are designed to fit a standard wall box. If a timer switch is used, an additional wall box may have to be installed in order to house a fan speed, direction and lighting control, adding additional expense and difficulty to the installation.

Security switches are also generally known in the art, either as an external «plug-in» module, or as a wall mounted switch, both of which may work in conjunction with a central controller. Security switches, known in the art, may switch an appliance on or off for predetermined intervals to give the appearance of occupancy. The disadvantage of the security switch is that one switch may switch only one load at a time. If the fan and light are to be switched independently, separate switches and wires would need be run, adding expense and difficulty to the installation. Alternately, if only the light is desired to be switched on or off, then the fan must be set by the user with its fan mounted controls to run the light only prior to programming the security switch. As in the timer switch discussed above, the security switch module generally requires a wall switch box for installation, and as such, any additional fan speed, fan direction, or light intensity control would require the installation of extra wall switch boxes, adding extra expense and difficulty to the installation.

In view of the deficiencies of the above prior art devices, it remains a requirement in the art to provide a remote control for a ceiling fan which can be easily installed using existing wiring, provide easy «intuitive» user-friendly operation, and provide a clear display to the user of fan speed, direction, and light intensity. It remains a further requirement in the art to provide a power supply for a remote control which can be powered solely from the switched load line of the fan and can power a sophisticated switching device, display or timer. It remains yet a further requirement in the art to provide automatic and independent switching operation of fan speed, fan direction, and light intensity. It remains an even further requirement in the art to provide timed independent automatic control of fan speed, fan direction, and light intensity. In addition, it remains a further requirement to provide a wireless remote control that does not necessarily rely on radio frequencies to control a particular ceiling fan and can also provide user-friendly control, display, and timed independent switching and control of fan speed, fan direction, and light intensity.

SUMMARY OF THE INVENTION

Therefore it is an object of the present invention to provide a remote control for a ceiling fan combined with a fan and light function display.

It is a further object of the present invention to provide a remote control for a ceiling fan which can communicate with a fan mounted control through the ceiling fan’s a.c. power wiring.

It is a further object of the present invention to provide a remote control for a ceiling fan which can be installed using existing house wiring.

It is a further object of the present invention to provide a remote control for a ceiling fan which can be easily operated by the user. It is a further object of the present invention to provide a clear, concise, easily discernible display at the control which indicates fan speed, fan direction, and light intensity.

It is a further object of the present invention to provide a power supply for a remote control for a ceiling fan which need only be connected in series with the switched load line of the ceiling fan.

It is a further object of the present invention to provide automatic and independent switching of fan speed, fan direction, and light intensity in a ceiling fan.

It is a further object of the present invention to provide timed independent control of fan speed, fan direction, and light intensity in a ceiling fan.

It is a further object of the present invention to provide a portable, wireless remote control with a fan and light function display as well as automatic and timed control for both ceiling fan and light fixture.

The foregoing objects, as well as others which are to become apparent from the text below, are achieved in a remote control for a ceiling fan by providing a microprocessor remote control with power supply and display, communicating over a switched a.c. load line with a further microprocessor mounted in the ceiling fan itself. The remote control comprises a power supply, a microprocessor, a keyboard, an internal clock and a display. The microprocessor may be programmed by the user to switch the fan off and on at predetermined speeds and directions, for programmed time intervals. In addition, the microprocessor may be programmed by the user to turn off, change speed, change direction, or change both speed and direction, after a predetermined interval. The microprocessor may in addition be programmed by the user to turn a light fixture on or off, or to particular light intensities for a predetermined time periods. The display shows the time and programming information, as well as fan speed, direction, and light intensity. In addition, the display may have an «animated» feature, showing fan speed, direction, or light intensity.

These and other objects of the present invention will be better understood from the following detailed description of the preferred embodiment of the invention, taken in conjunction with the accompanying drawings in which similar elements in different Figures are assigned the same last two digits in their reference numeral (i.e.—ceiling fan 106 of FIG. 1 and ceiling fan 206 of FIG. 2).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the installation of a prior art ceiling fan using existing house wiring.

FIG. 2 shows the installation of the remote control of the present invention using existing house wiring.

FIG. 3 shows a perspective view of the remote control and display of the present invention.

FIG. 4 shows a perspective view of the infrared control of an alternative embodiment of the present invention.

FIG. 5 shows a detailed frontal view of the remote control and display of FIG. 3.

FIG. 6 shows a block diagram for the transmitter in the remote control and the receiver for the ceiling fan of the present invention.

FIG. 7 shows examples of signals transmitted between the remote control transmitter and the fan mounted receiver.

FIG. 8 shows a more detailed block diagram of the transmitter and receiver of FIG. 6.

FIG. 9 shows a schematic of the transmitter of FIG. 6.

FIGS. 10A and 10B show a schematic of the receiver of FIG. 6.

FIG. 11 shows a detailed view of the display of FIG. 5 upon initial power up.

FIG. 12 shows a detailed view of the display of FIG. 5 in the default mode.

FIG. 13 shows a detailed view of the animated fan display.

FIG. 14 shows a detailed view of the animated light display.

FIG. 15 shows how display 512 appears upon entering program mode.

FIG. 16 shows how display 512 appears when entering fan «on» time.

FIG. 17 shows how display 512 appears when entering fan «off» time.

FIG. 18 shows how display 512 appears when listing program information.

FIG. 19 shows display 512 displaying light fixture «on» time.

FIG. 20 shows display 512 displaying light fixture «off» time.

FIG. 21 shows display 512 displaying fan «on» time.

FIG. 22 shows display 512 displaying fan «off» time.

DETAILED DESCRIPTION

Referring now to FIG. 2, wall switch 101 of FIG. 1 may be replaced with remote control 211 which may comprise a control panel, a display window, a power supply, and a transmitter (not shown). Remote control 211 may be designed to fit into and cover a typical wall switch box. Remote control 211 draws power from load line 202 which runs from circuit main 270 through remote control 211 and switched load line 203 to ceiling fan 206. The power supply, which will be discussed in connection with FIG. 9 below, requires only connections to load line 202 and switched load line 203.

Remote control 211 may switch power to switched load line 203, and in addition transmit signals over switched load line 203 to fan mounted control 210. Fan mounted control 210 contains a receiver, a control, and a switching means controlling speed and direction of ceiling fan 206 and intensity of light fixture 280. As in FIG. 1, neutral line 204 from circuit main 270 terminates in a ceiling junction box 205 where it is connected to ceiling fan 206.

The term «fan mounted» as it applies to fan mounted control 210 is defined here to be mounted in the immediate vicinity of, and electrically connected to, a ceiling fan. Fan mounted control 210 may be built in to ceiling fan 206 at the factory, or may be an aftermarket accessory kit which may be installed by the user. Some examples of locations of fan mounted control 210 would be in the housing of ceiling fan 206, in ceiling junction box 205, or in an module located between the housing of ceiling fan 206 and ceiling junction box 205 as in the device of Angott, discussed above. The fan mounted control 210 need not be physically mounted to ceiling fan 206.

FIG. 3 shows a more detailed view of remote control 211 shown in FIG. 2. Remote control 211 may be designed to fit a standard wall switch box using two screws threaded through screw holes 316 into the wall switch box. Remote control 211 may have a display window 312, override switches 313, and programming switches 314. Remote control 211 may also have a master power switch 315 for cutting off all power to ceiling fan 206 and light fixture 280.

FIG. 4 shows an alternative embodiment of the present invention, an infrared remote control. Infrared remote control 411 is similar to remote control 211 except for the presence of infrared transmitter 417 and the absence of power switch 315 shown in FIG. 3. Infrared transmitter 417 may communicate with an infrared receiver mounted in a wall switch box, or with an infrared receiver mounted on ceiling fan 206. Alternately, infrared remote control 411 may work in conjunction with remote control 211 shown in FIG. 3. The infrared receiver may be installed on remote control 211 of FIG. 3, for example, behind display window 312. Commands sent from infrared remote control 411 would be received by remote control 211 and then further transmitted to fan mounted control 210 shown in FIG. 2.

Alternatively, infrared remote control 411 may communicate directly with an infrared receiver (not shown) mounted on ceiling fan 206 and coupled to fan mounted control 210 shown in FIG. 2. This direct infrared link may be especially useful in installations where no wall mounted switch box available or practical to install. Infrared interference from light fixture 280 may be reduced by the use of a 60 Hz notch filter on the infrared receiver to filter out infrared «noise» produced by heat from light fixture 280. The infrared receiver may be mounted in a position on ceiling fan 206, such as light fixture 280, where the rotating fan blades would not block the infrared signal. Alternately, the infrared signal could be timed to avoid interference from the rotating fan blades, or the signal could be made very short and transmitted repeatedly to assure that it is received by an infrared receiver mounted on ceiling fan 206 without interference from the rotating fan blades.

CONTROL PANEL

FIG. 5 shows a more detailed drawing of control panel 318 and display window 312 of FIG. 3. Control Panel 518 contains a plurality of switches and display window 512. Display window 512 may contain a LCD, LED, plasma, CRT or other type of display. The elements of display window 512 are described in conjunction with FIGS. 11-14 below.

Main power switch 515 provides a main power cutoff for both remote control 211 as well as ceiling fan 206. If main power switch 515 is turned off for more than 10 minutes, remote control 211 may lose its memory and may have to be reprogrammed. In an alternate embodiment, a battery back-up (not shown) may be provided for the memory of remote control 515 in order to preserve the time setting and programming for longer periods of power loss.

Control panel 518 may be provided with a first row of switches comprising fan switch 521, light switch 522, and reversing switch 523. These three switches are used to control fan speed, fan direction, and light intensity manually, or may be used to program fan speed, fan direction, and light intensity for programmed operation. Control panel 518 may also be provided with an additional row of switches 528-531 for preprogrammed features such as auto-reverse and delay off. Control panel 518 may be provided with yet an additional row of switches comprising program switch 524, hour switch 525, minute switch 526, and auto/manual switch 527. Hour switch 525 and munute switch 526 are used in combination to set the clock and to program time intervals for timed operation. Program switch 524 is used to switch between regular operation and program mode. Auto/manual switch 527 is used to switch between automatic (programmed) operation and manual override mode. The detailed operation of each of the switches of FIG. 5 will be described in conjunction with FIGS. 11-14 below.

In the preferred embodiment, Switches 521-527 are push-button, momentary contact, spring-release type switches. Preferably, the switches are a low cost type membrane or rubber push button type. Main power switch 515 may be a slide or toggle type single pole, double throw switch rated to carry the entire load of ceiling fan 206 as well as power for remote control 211. Alternately, main power switch 515 could be a type of switch similar to switches 521-527 and used to switch power to a switching relay or triac which would in turn switch power to ceiling fan 206 and/or remote control 211.

BLOCK DIAGRAM

FIG. 6 shows a block diagram of the ceiling fan control of the present invention. Load line 602 from circuit main 670 terminates in a wall switch box (not shown) and connects to remote control 611. Switched load line 603 is connected from remote control 611 to fan mounted control 610. Neutral line 604 is connected directly from circuit main 670 to fan mounted control 610.

Remote control 611 contains power supply 671, transmitter microprocessor 672, display 612, main power switch 615, and control panel 618. Note that power supply 671 is connected in series with transmitter microprocessor 672 and fan mounted control 610 through switched load line 603. Power supply 671 draws power from switched load line 603, and produces a direct current (DC) output to provide power to transmitter microprocessor 672, control panel 618, and display 612. Main power switch 615 disconnects power from both remote control 611 and ceiling fan 206, as discussed in connection with FIG. 5 above. Display 612 may display the time of day, fan speed, fan direction, and light intensity information, along with programming information as will be discussed in connection with FIGS. 11-14 below. Control panel 618 contains switches 521-527 as discussed in connection with FIG. 5 above, for accepting control and programming inputs.

Transmitter microprocessor 672 may accept control and programming inputs from control panel 618 and subsequently drive display 612. Transmitter microprocessor 672 may also store information, such as program operations, and in addition may send signals to fan mounted ceiling control 610 modulated over the 60 Hz AC power signal on switched load line 603 as will be described in connection with FIG. 7 below.

Fan mounted control 610 comprises AC decoder 673, receiver microprocessor 674, power supply 675, fan driver circuit 676, and light driver circuit 677. Switched load line 603 passes from remote control 611 to fan mounted control 610 where it connects to power supply 675 and AC decoder 673. Power supply 675 may be a conventional power supply in the sense that it may be connected to both neutral line 604 and switched load line 603 through AC decoder 673. Power supply 675 supplies DC voltage to receiver microprocessor 674, AC decoder 673, fan driver 676, and light driver 677.

AC decoder 673 receives the 60 Hz AC power signal along with the modulated control signals from transmitter microprocessor 672 over switched load line 603. AC decoder 673 decodes the control signals sent from transmitter microprocessor 672 modulated on the 60 Hz power signal over switched load line 603 and transmits the decoded signals to receiver microprocessor 674. Receiver microprocessor 674 is programmed to interpret signals sent from transmitter microprocessor 672 and control fan motor 679 and light fixture 678 accordingly.

Transmitter microprocessor 672 and receiver microprocessor 674 may be any one of a number of microprocessors known in the art. In the preferred embodiment, the transmitter microprocessor 672 may comprise a NEC PD7502 and the receiver microprocessor 674 may comprise a National Panasonic MN1551.

Fan motor 679 is switched by fan driver 676. Fan driver 676 may be a series of triacs, typically three, one for each fan speed, along with a reversing relay. Receiver microprocessor 674 controls the triacs in fan driver 676 to switch on various windings in fan motor 679, or alternately control fan speed by switching a series of speed control capacitors into the circuit. Receiver microprocessor 674 may be programmed to control the reversing relay for reversing power to fan motor 679. When a reversing signal is received by receiver microprocessor 674, receiver microprocessor 674 will shut off all power to fan motor 679 for one second to allow the speed control capacitors to discharge, then switch the reversing relay and reapply power to fan motor 679. The time delay is necessary in order to prevent the stored charge in the speed control capacitors from arcing the contacts of the reversing relay.

In an alternate embodiment, fan driver 676 may comprise a variable speed control, typically by phase controlled triac, to provide an infinitely variable speed control for fan motor 679. In the preferred embodiment, a three speed control is used, as present low cost frequency inverters today tend to reshape the sinusoidal shape of the 60 Hz power signal and subsequently cause excessive fan noise.

Light Driver 677 may be silicon controlled rectifier (SCR) which provides an infinitely variable lighting intensity control (i.e.—dimmer) for light fixture 680. In alternate embodiments, light driver 677 may have a discrete series of lighting intensities (i.e.—low, medium and high) or may be a triac or relay used for a simple on/off control.

In the above embodiments, both transmitter microprocessor 672 and receiver microprocessor 674 are characterized as being microprocessors, however, it is envisioned that one or both of the microprocessors could be replaced with other types of controls, such as combinational logic circuits (i.e.—TTL). Further, the programming features are described above as being stored and executed in transmitter microprocessor 672 with receiving microprocessor 674 performing the switching and control operations. However, it is envisioned that programming commands may be transmitted directly to receiving microprocessor 674 and the programming stored and executed there. Further, it is envisioned that bidirectional communication between the transmitter microprocessor 672 and receiver microprocessor 674 may be used. Such bidirectional communication may be used for transmitting acknowledgment signals, service signals (i.e.—fan motor overheat, bulb burnt out, etc.), temperature signals, or other information from the receiver microprocessor 674 to the transmitter microprocessor 672.

DATA TRANSMISSION

FIG. 7 shows an example of signals transmitted between the transmitter microprocessor 672 and receiver microprocessor 674. A typical command signal 790 sent from the transmitter microprocessor 672 to the receiver microprocessor 674 may comprise a 7 bit digital signal. The first bit of each signal may always be a 1, while the next three bits may be the particular command code bits. The fifth bit may be a parity bit and would always be a 1. The last two bits may be each be 0, indicating the end of the coded signal. In this instance, only three bits are used for command signals, making a possible 2 3 combinations of bits, or a possible 8 commands. Additional commands may be used by adding additional bits to the command signal.

In a ceiling fan, however, there are a limited number of control signals that may be desirable. An example of such control signals may be:

1. A remote control for a ceiling fan comprising:

power supply means for supplying power to said remote control;

keyboard means for inputting ceiling fan control commands;

control means coupled to said keyboard means and said power supply means for accepting the ceiling fan control commands and outputting a series of ceiling fan control signals;

transmitter means coupled to said control means and said power supply means for transmitting the control signals to the ceiling fan; and

animated fan display means coupled to said control means for displaying an animated pictorial representation of the ceiling fan;

wherein said animated fan display means is animated to provide an appearance of rotation in a direction consistent with a direction of rotation of the ceiling fan as determined from the ceiling fan control commands from said control means.

2. The remote control of claim 1 wherein said animated fan display means is animated to provide an appearance of rotation in a direction and speed related to a direction and speed of rotation of the ceiling fan as determined from the ceiling fan control commands from said control means.

3. A remote controlled ceiling fan comprising:

a ceiling fan;

a remote control comprising:

first power supply means for supplying power to said remote control;

keyboard means for inputting ceiling fan control commands;

first control means coupled to said keyboard means and said first power supply means for accepting the ceiling fan control commands and outputting a series of ceiling fan control signals;

transmitter means coupled to said first control means and said first power supply means for transmitting said control signals to the ceiling fan; and animated fan display means coupled to said first control means for displaying an animated pictorial representation of said ceiling fan to provide an appearance of rotation of said ceiling fan as determined from the ceiling fan control signals from said first control means, and

fan control means coupled to said ceiling fan and said remote control, said fan control means comprising:

second power supply means for providing power to said fan control means;

receiver means coupled to said second power supply means for receiving the ceiling fan control signals from said remote control and outputting ceiling fan control commands; and

second control means coupled to said second power supply means and said receiver means for receiving the ceiling fan control commands and controlling said ceiling fan.

4. The remote controlled ceiling fan of claim 3, wherein said remote control further comprises:

a load line and a neutral line for supplying power to said ceiling fan.

5. The remote controlled ceiling fan of claim 4, wherein said first power supply means is connected in series with said load line and said ceiling fan.

6. The remote controlled ceiling fan of claim 5 wherein said first power supply means further comprises:

triac means coupled in series with said ceiling fan and said load line for providing a voltage drop.

7. The remote controlled ceiling fan of claim 6 wherein said first power supply further comprises:

rectifier means, coupled to said triac means, for rectifying said voltage drop provided by said triac means and outputting a rectified voltage, and

regulator means, coupled to said rectifier means, for regulating and filtering said rectified voltage and outputting a regulated voltage.

8. The remote controlled ceiling fan of claim 3 wherein said first control means comprises a microprocessor.

9. The remote controlled ceiling fan of claim 3, wherein said remote control further comprises:

display means, coupled to said first power supply means and said first control means, for displaying the ceiling fan commands.

10. The remote controlled ceiling fan of claim 9, wherein said first control means further comprises a clock means for providing a clock signal.

11. The remote controlled ceiling fan of claim 10, said display means further comprising:

clock display means for displaying the clock signal.

12. The remote controlled ceiling fan of claim 3, wherein said animated fan display means is animated to provide an appearance of rotation in a direction consistent with a direction of rotation of said ceiling fan as determined from the ceiling fan control signals from said first control means.

13. The remote controlled ceiling fan of claim 12, wherein said animated fan display means is animated to provide an appearance of rotation in a direction and speed consistent with a direction and speed of rotation of said ceiling fan.

14. The remote controlled ceiling fan of claim 3, wherein said ceiling fan further comprises a light fixture and the ceiling fan control commands input to said keyboard means further comprise light fixture control commands and the ceiling fan control signals output from said first control means further comprise light fixture control signals.

15. The remote controlled ceiling fan of claim 14, further comprising:

animated light display means for displaying an animated appearance of brightness consistent with the brightness of said light fixture as determined from the light fixture control commands from said first control means.

16. The remote controlled ceiling fan of claim 14, wherein said control means further comprises:

program means for storing a program for controlling operation of said light fixture.

17. The remote controlled ceiling fan of claim 3, wherein said control means further comprises:

program means for storing a program for controlling operation of the ceiling fan.

18. The remote controlled ceiling fan of claims 16 or 17, wherein said program means may be programmed with the fan control commands input from said keyboard means.

19. The remote controlled ceiling fan of claim 3, wherein said transmitter means further comprises:

infrared transmitter means, coupled to said transmitter means, for transmitting an infrared control signal; and

infrared receiver means for receiving infrared ceiling fan control signals transmitted by said infrared transmitter means and supplying the infrared ceiling fan control signals to said second control means.

20. In a control device for a ceiling fan, an animated display device comprising:

Remote control for a ceiling fan - Hunter Fan Company

a plurality of fan blade display elements extending radially from a central point, said plurality of fan blade display elements grouped into at least a first and a second group; and

exciter means coupled to said plurality of fan blade display elements for selectively exciting said fan blade display elements to pictorially represent movement of said ceiling fan,

wherein said exciter means selectively excites said fan blade display elements to pictorially represent movement of said ceiling fan as determined from ceiling fan control signals from a said control device.

21. The animated fan display of claim 20, wherein said excited means excites said first group at a first time period and said second group at a second time period to provide an appearance of rotation of said fan blade display elements in a direction consistent with a direction of rotation of the ceiling fan as determined from commands received from said control device.

22. The animated fan display device of claim 21, wherein said exciter means excites said first group during said first time period and said second group during said second time period to provide an appearance of rotation of said fan blade display elements at a speed consistent with a speed of rotation of the ceiling fan.

23. In a control device for a ceiling fan including a light fixture, an animated light display device comprising:

animated light fixture display shaped substantially as a light fixture;

a plurality of animated ray display elements arranged radially from said light fixture display; and

exciter means coupled to said plurality of ray display elements for selectively exciting said light fixture display and said plurality of ray display elements to pictorially illumination of said light fixture,

wherein said exciter means selectively excites said light fixture display and said plurality of ray display elements to pictorially represent illumination of said light fixture as determined from ceiling light control signals from said control device.

24. The animated light display of claim 23, wherein said exciter means excites said light fixture display to indicate intensity of illumination of said light fixture as determined from ceiling light control signals from said control device.

25. The animated light display device of claim 24 wherein said exciter means excites said plurality of ray display elements during a first time period and not during a second time period and vice versa.

Description:

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is directed to a remote control for a combined ceiling fan and light fixture. Specifically, the present invention is directed to a remote control which may be used as a replacement for an existing wall switch and which provides for control of the ceiling fan and accompanying light fixture without any modification to the existing electrical wiring between the wall switch and the light fixture. In an alternative embodiment, the remote control may be an infrared or radio linked remote control communicating with the wall control discussed above, or communicating with a control mounted in the ceiling fan or accompanying light fixture. In either embodiment, the remote control may be equipped with a novel animated display depicting direction and/or speed of fan rotation as well as light intensity.

2. Description of the Prior Art

Ceiling fans known in the prior art provide for a variety of desired features. Specifically, modern ceiling fans may be controlled to operate at a plurality of different speeds from a relatively low speed to a high maximum speed. Low speeds may be desirable to provide for general air circulation and to eliminate «hot» or «cold» spots within a room. Higher speeds may be desirable for cooling effects (in summer) or to eliminate temperature gradients (in winter). In addition, the direction of rotation may generally be controlled to be in either one of two opposite directions. In the winter, it is generally desirable to have the fan turn in one direction (updraft) to circulate hot air away from the ceiling. In the summer, it may be desirable to have the fan turn in the opposite direction (downdraft) to provide a cooling effect on the occupants in the room.

Ceiling fans are often combined with a light fixture or fixtures with the intensity level of the light fixture(s) controlled from low levels to maximum high levels. Most ceiling fans are designed so that they may be installed in existing ceiling junction boxes, replacing existing light fixtures. In such an installation, shown in FIG. 1, there is generally a wall switch 101 switching load line 102 from circuit main 170 in the house. Switched load line 103 and neutral line 104 from circuit main 170 terminate in a ceiling junction box 105. A ceiling fan 106 with light fixture 180 is typically installed attached to junction box 105 in a similar manner as a standard light fixture. Because ceiling fan 106 must be adaptable to existing wiring in the house, fan speed switch 107, fan direction switch 108, and light intensity dimmer switch 109 are usually mounted in the switch housing attached to ceiling fan 106 itself.

Fan mounted switches 107, 108, and 109 may be preset to the desired levels of speed, direction, and light intensity, respectively, and wall switch 101 used to turn ceiling fan 106 and light fixture 180 to these preset levels.

The disadvantage of such an approach is that each time the user wishes to change the existing levels, a switch must be changed at ceiling fan 106. For example, during the daytime, it may be desirable to run ceiling fan 106 at a high speed and shut off light fixture 180 in order to cool the house. In the evening, it may be desirable to run ceiling fan 106 at a medium speed and turn light fixture 180 on to maintain an even temperature throughout the house and to provide illumination, respectively. At night, it may be desirable to run ceiling fan 106 at low speed and turn light fixture 180 off to maintain air circulation with a minimum of noise. If ceiling fan 106 is located at a sufficient distance above the floor, it may be necessary to use a step stool or ladder in order to reach fan mounted switches 107, 108, and 109 in order to change the speed or direction of ceiling fan 106 or the intensity of light fixture 180.

One way to overcome the disadvantages of the installation of FIG. 1 would be to install separate circuits to individual wall mounted switches for the fan speed, fan direction, and lighting control. While such an installation may be practical in new construction, in an existing home it would be necessary to remove portions of the ceiling and walls to run the additional wiring. In addition, in either new or existing construction, running additional wires involves additional expense and in some localities may require the services of a licensed electrician. Further, many ceiling fans are sold as owner-installed units with an easy to use installation kit. The complexities of house wiring are beyond the capabilities of most «do-it-yourselfers» and the length of wiring in each installation would be different, adding expense to the installation kit.

One prior art device which has been used to provide a partial solution to the above described problem of remotely controlling the operation of a ceiling fan is shown in U.S. Pat. No. 4,413,211 issued Nov. 1, 1983 to Fowler. This prior art Patent is directed towards a remote load selector which uses an existing wall switch to control a load by toggling the existing switch to provide for the selective application of power to multiple loads such as a combined ceiling fan and light fixture. The Fowler device has a number of limitations due to the fact that the user must apply power by manually operating the wall switch. For instance, the user may become confused as to which level the fan was previously switched to, making control difficult. In addition, the prior art load selector described above is generally limited in the number of control steps that can be realistically accomplished by the application and removal of power to the loads. For example, a typical ceiling fan may have three speeds in two separate directions, making a total of six different combinations of toggled signals that may be sent. If a light fixture is added to the fan, the number of combinations may be doubled to twelve. If the light fixture has more than one intensity setting, or if additional fan speeds are desired, the number of toggled combinations expands geometrically. The user may find himself toggling the wall switch repeatedly trying to find the proper combination of light intensity, fan speed, and fan direction.

Another prior art device which provides a partial solution to the above mentioned problem is the radio frequency remote control described in U.S. Pat. No. 4,548,544 to Angott. Angott shows a remote control for a ceiling fan with a hand held radio frequency transmitter and a radio frequency receiver located in the fan housing. The Angott device has the advantage in that it does not require a wall switch box, and thus may be practical in installations where a wall switch is not present. The disadvantage of the Angott unit is similar to that of the Fowler unit, in that only two switches are provided for the remote control, and thus the user must «toggle» the switches in order to switch between speeds, directions, and light intensities. Further, radio frequency controls have the disadvantage in that they are subject to electromagnetic interference and can only transmit a finite distance. If multiple fan installations are contemplated (i.e.—commercial installation, auditorium, etc.) then separate radio frequencies would be needed for each remote control in order to be able to control each fan individually.

The toggling mechanism of Fowler, the radio frequency remote control of Angott, and the prior art fan mounted controls (typically pull chain switches) all present an additional disadvantage in that it is not readily apparent to the user what speed the fan is turning when switching from one speed to the next. The fan blades are relatively large and heavy, consequently when the fan speed is changed, the fan accelerates or decelerates slowly due to the inertia of the fan blades, the mass of the moving parts of the a.c. induction motor, and the mass of the mechanism which drives the blades. This is a distinct shortcoming as the user must wait until the fan reaches the selected speed in order to determine which of the available speeds has been selected.

One prior art device which attempts to overcome the speed indication problem is that of U.S. Pat. No. 4,762,463, issued Aug. 9, 1988 to Yang. Yang uses a series of indicator lights located on the fan housing to indicate fan speed. The disadvantage of this indicator light arrangement is that the light may not be visible from the location of the wall mounted switch, and hence the user may not be able to see the indicator lights and determine what speed the fan is turning at. Further, in installations in high ceilings the indicator lights may be difficult to see without a step stool or ladder. In addition, the fan mounted indicator lights may not be aesthetically pleasing for some ornate fan designs which attempt to give the fan an historical look. The indicator lights may also be an annoyance in a bedroom installation where the lights would be quite visible to a user lying awake in bed. Finally, the Yang device does not solve the aforementioned problem of providing a fan speed and direction control combined with a lighting control at a remote location from the fan housing.

One prior art device which attempts to solve both the control and indicator problems of the devices discussed above, is the Hunter Model 22691 3-Speed Rotary Speed Control. The unit comprises a four position rotary switch and control module, packaged to replace an ordinary light switch in a standard wall box. The Model 22691 can be easily installed using existing wiring, and provides an easy to use four position switch (off, low, medium, and high). The Model 22691 rotary switch has an advantage over the Fowler device discussed above in that the rotary dial also serves as an indicator to indicate to the user what speed the fan is switched to. The disadvantage of the Model 22691 is that it cannot provide reversing control or lighting control. In fact the Model 22691 has one drawback due to the nature of the circuit design in that the fan and light cannot be used simultaneously unless the control is switched to the «high» setting.

Another prior art device which provides a partial solution to both of the aforementioned control and indication problems is shown in U.S. Pat. No. 4,719,466, issued Jan. 12, 1988 to Hart. Hart provides a remote control wall switch with three switches. One switch is a standard single pole double throw on/off switch for providing power to the fan. The other two switches are spring release toggle switches for the light and speed controls. The switches operate similarly to the device of Fowler discussed above in that the toggle switches are momentarily switched to change fan speed or light intensity. Fan direction is controlled by operating both toggle switches simultaneously. Fan speed is indicated by an audio tone generated by a tone generator located in the fan housing.

The disadvantages of the Hart device are several. First, the toggle switching technique can be confusing for the user, as the device discriminates between toggle of more than one second and less than one second. The user must have a degree of coordination in order to properly switch between speeds, light intensities, or fan directions. Further, if the user «overshoots» his desired fan speed, he must toggle through the range again, as in the Fowler device. Further, in order to ascertain the fan speed, the user must be able to hear and discern the audio tones. In applications where the fan is remotely located from the control (i.e.—auditorium) the audio tone may not be heard where the fan speed control switch is located (i.e.—backstage). In addition, background noise may obscure the audio tones, or the audio tones may themselves be a nuisance (i.e.—commercial installations in restaurants, shops, theaters, etc.). Finally, the audio tones must be discernible to the user. Those who are hearing impaired or «tone deaf» may not be able to discern what speed the fan is set at from the audio tones. Even those of perfect hearing may not be able to determine fan speed upon initial power up, as the tone may have to be compared to a previous tone to discern whether the speed is relatively high or low.

In both the Hart device and the Hunter Model 22691, the remote controls are relatively simple devices. Hart uses Silicon Controlled Rectifiers (SCRs) or Triacs to alter the zero-crossing point of the 60 Hz sinusoidal power line signal in order to communicate with a controller mounted in the ceiling fan itself. The Hunter Model 22691 uses a series of switched capacitors to alter fan speed. In all three instances, the remote controls do not contain a power supply per se, and thus cannot drive any sophisticated switching devices or displays. In the prior art devices of Hart and Fowler, the power supply is wired in parallel to the ceiling fan and located within the ceiling fan housing itself. The power supply is usually located in the ceiling fan because, as in the installation shown in FIG. 1, neutral line 104 does not pass through wall switch box 101, and hence there would be no return path for a power supply wired in parallel with ceiling fan 106 if it were located in wall switch box 101. As such, the prior art devices do not have a power supply capable of driving a sophisticated switching device or fan speed indicator, and instead rely on simple toggle switches or a battery powered radio transmitter to transmit signals to a fan mounted control.

The use of simple switching devices to control fan speed, direction and light intensity has a further disadvantage, as the user must physically be present to change fan speed, direction, or light intensity. The control devices discussed above do not have any provision for automatic control of ceiling fan 106 or light fixture 180 when the user is absent. The disadvantages of these devices is that if the user leaves ceiling fan 106 on when no one is present, ceiling fan 106 would be wasting energy. Further, when ceiling fan 106 is switched on in the evening, it may provide a comfortable breeze, however as night falls, and temperature drop, ceiling fan 106 may be circulating too much air for comfort, forcing the user to get out of bed and shut ceiling fan 106 off. In addition, it may be desirable to have light fixture 180 switched on and off occassionally if the user is not at home for several days in order to provide the appearance of occupancy and discourage burglars.

Wall mounted timer switches are generally known in the art. Such switches can be used to switch an appliance or light off after a predetermined period. The disadvantage of a simple timer switch is that it merely shuts off all power to an appliance. More sophisticated known timer switches may have an internal clock to switch an appliance on or off at predetermined intervals.

For a ceiling fan, however, it may be desirable to reduce fan speed or reverse fan direction after a predetermined amount of time in order to maintain comfort in a room. In addition it may be desirable to switch light fixture 180 independently of ceiling fan 106. Further, it may be desirable to turn ceiling fan 106 off or on, change fan speed, or change fan direction at a predetermined interval or at a predetermined temperature. A simple timer switch does not provide independent control of fan speed, direction or light intensity, nor does it provide a display of fan speed, direction or light intensity. In addition, many prior art timer switches are designed to fit a standard wall box. If a timer switch is used, an additional wall box may have to be installed in order to house a fan speed, direction and lighting control, adding additional expense and difficulty to the installation.

Security switches are also generally known in the art, either as an external «plug-in» module, or as a wall mounted switch, both of which may work in conjunction with a central controller. Security switches, known in the art, may switch an appliance on or off for predetermined intervals to give the appearance of occupancy. The disadvantage of the security switch is that one switch may switch only one load at a time. If the fan and light are to be switched independently, separate switches and wires would need be run, adding expense and difficulty to the installation. Alternately, if only the light is desired to be switched on or off, then the fan must be set by the user with its fan mounted controls to run the light only prior to programming the security switch. As in the timer switch discussed above, the security switch module generally requires a wall switch box for installation, and as such, any additional fan speed, fan direction, or light intensity control would require the installation of extra wall switch boxes, adding extra expense and difficulty to the installation.

In view of the deficiencies of the above prior art devices, it remains a requirement in the art to provide a remote control for a ceiling fan which can be easily installed using existing wiring, provide easy «intuitive» user-friendly operation, and provide a clear display to the user of fan speed, direction, and light intensity. It remains a further requirement in the art to provide a power supply for a remote control which can be powered solely from the switched load line of the fan and can power a sophisticated switching device, display or timer. It remains yet a further requirement in the art to provide automatic and independent switching operation of fan speed, fan direction, and light intensity. It remains an even further requirement in the art to provide timed independent automatic control of fan speed, fan direction, and light intensity. In addition, it remains a further requirement to provide a wireless remote control that does not necessarily rely on radio frequencies to control a particular ceiling fan and can also provide user-friendly control, display, and timed independent switching and control of fan speed, fan direction, and light intensity.

SUMMARY OF THE INVENTION

Therefore it is an object of the present invention to provide a remote control for a ceiling fan combined with a fan and light function display.

It is a further object of the present invention to provide a remote control for a ceiling fan which can communicate with a fan mounted control through the ceiling fan’s a.c. power wiring.

It is a further object of the present invention to provide a remote control for a ceiling fan which can be installed using existing house wiring.

It is a further object of the present invention to provide a remote control for a ceiling fan which can be easily operated by the user. It is a further object of the present invention to provide a clear, concise, easily discernible display at the control which indicates fan speed, fan direction, and light intensity.

It is a further object of the present invention to provide a power supply for a remote control for a ceiling fan which need only be connected in series with the switched load line of the ceiling fan.

It is a further object of the present invention to provide automatic and independent switching of fan speed, fan direction, and light intensity in a ceiling fan.

It is a further object of the present invention to provide timed independent control of fan speed, fan direction, and light intensity in a ceiling fan.

It is a further object of the present invention to provide a portable, wireless remote control with a fan and light function display as well as automatic and timed control for both ceiling fan and light fixture.

The foregoing objects, as well as others which are to become apparent from the text below, are achieved in a remote control for a ceiling fan by providing a microprocessor remote control with power supply and display, communicating over a switched a.c. load line with a further microprocessor mounted in the ceiling fan itself. The remote control comprises a power supply, a microprocessor, a keyboard, an internal clock and a display. The microprocessor may be programmed by the user to switch the fan off and on at predetermined speeds and directions, for programmed time intervals. In addition, the microprocessor may be programmed by the user to turn off, change speed, change direction, or change both speed and direction, after a predetermined interval. The microprocessor may in addition be programmed by the user to turn a light fixture on or off, or to particular light intensities for a predetermined time periods. The display shows the time and programming information, as well as fan speed, direction, and light intensity. In addition, the display may have an «animated» feature, showing fan speed, direction, or light intensity.

These and other objects of the present invention will be better understood from the following detailed description of the preferred embodiment of the invention, taken in conjunction with the accompanying drawings in which similar elements in different Figures are assigned the same last two digits in their reference numeral (i.e.—ceiling fan 106 of FIG. 1 and ceiling fan 206 of FIG. 2).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows the installation of a prior art ceiling fan using existing house wiring.

FIG. 2 shows the installation of the remote control of the present invention using existing house wiring.

FIG. 3 shows a perspective view of the remote control and display of the present invention.

FIG. 4 shows a perspective view of the infrared control of an alternative embodiment of the present invention.

FIG. 5 shows a detailed frontal view of the remote control and display of FIG. 3.

FIG. 6 shows a block diagram for the transmitter in the remote control and the receiver for the ceiling fan of the present invention.

FIG. 7 shows examples of signals transmitted between the remote control transmitter and the fan mounted receiver.

FIG. 8 shows a more detailed block diagram of the transmitter and receiver of FIG. 6.

FIG. 9 shows a schematic of the transmitter of FIG. 6.

FIGS. 10A and 10B show a schematic of the receiver of FIG. 6.

FIG. 11 shows a detailed view of the display of FIG. 5 upon initial power up.

FIG. 12 shows a detailed view of the display of FIG. 5 in the default mode.

FIG. 13 shows a detailed view of the animated fan display.

FIG. 14 shows a detailed view of the animated light display.

FIG. 15 shows how display 512 appears upon entering program mode.

FIG. 16 shows how display 512 appears when entering fan «on» time.

FIG. 17 shows how display 512 appears when entering fan «off» time.

FIG. 18 shows how display 512 appears when listing program information.

FIG. 19 shows display 512 displaying light fixture «on» time.

FIG. 20 shows display 512 displaying light fixture «off» time.

FIG. 21 shows display 512 displaying fan «on» time.

FIG. 22 shows display 512 displaying fan «off» time.

DETAILED DESCRIPTION

Referring now to FIG. 2, wall switch 101 of FIG. 1 may be replaced with remote control 211 which may comprise a control panel, a display window, a power supply, and a transmitter (not shown). Remote control 211 may be designed to fit into and cover a typical wall switch box. Remote control 211 draws power from load line 202 which runs from circuit main 270 through remote control 211 and switched load line 203 to ceiling fan 206. The power supply, which will be discussed in connection with FIG. 9 below, requires only connections to load line 202 and switched load line 203.

Remote control 211 may switch power to switched load line 203, and in addition transmit signals over switched load line 203 to fan mounted control 210. Fan mounted control 210 contains a receiver, a control, and a switching means controlling speed and direction of ceiling fan 206 and intensity of light fixture 280. As in FIG. 1, neutral line 204 from circuit main 270 terminates in a ceiling junction box 205 where it is connected to ceiling fan 206.

The term «fan mounted» as it applies to fan mounted control 210 is defined here to be mounted in the immediate vicinity of, and electrically connected to, a ceiling fan. Fan mounted control 210 may be built in to ceiling fan 206 at the factory, or may be an aftermarket accessory kit which may be installed by the user. Some examples of locations of fan mounted control 210 would be in the housing of ceiling fan 206, in ceiling junction box 205, or in an module located between the housing of ceiling fan 206 and ceiling junction box 205 as in the device of Angott, discussed above. The fan mounted control 210 need not be physically mounted to ceiling fan 206.

FIG. 3 shows a more detailed view of remote control 211 shown in FIG. 2. Remote control 211 may be designed to fit a standard wall switch box using two screws threaded through screw holes 316 into the wall switch box. Remote control 211 may have a display window 312, override switches 313, and programming switches 314. Remote control 211 may also have a master power switch 315 for cutting off all power to ceiling fan 206 and light fixture 280.

FIG. 4 shows an alternative embodiment of the present invention, an infrared remote control. Infrared remote control 411 is similar to remote control 211 except for the presence of infrared transmitter 417 and the absence of power switch 315 shown in FIG. 3. Infrared transmitter 417 may communicate with an infrared receiver mounted in a wall switch box, or with an infrared receiver mounted on ceiling fan 206. Alternately, infrared remote control 411 may work in conjunction with remote control 211 shown in FIG. 3. The infrared receiver may be installed on remote control 211 of FIG. 3, for example, behind display window 312. Commands sent from infrared remote control 411 would be received by remote control 211 and then further transmitted to fan mounted control 210 shown in FIG. 2.

Alternatively, infrared remote control 411 may communicate directly with an infrared receiver (not shown) mounted on ceiling fan 206 and coupled to fan mounted control 210 shown in FIG. 2. This direct infrared link may be especially useful in installations where no wall mounted switch box available or practical to install. Infrared interference from light fixture 280 may be reduced by the use of a 60 Hz notch filter on the infrared receiver to filter out infrared «noise» produced by heat from light fixture 280. The infrared receiver may be mounted in a position on ceiling fan 206, such as light fixture 280, where the rotating fan blades would not block the infrared signal. Alternately, the infrared signal could be timed to avoid interference from the rotating fan blades, or the signal could be made very short and transmitted repeatedly to assure that it is received by an infrared receiver mounted on ceiling fan 206 without interference from the rotating fan blades.

CONTROL PANEL

FIG. 5 shows a more detailed drawing of control panel 318 and display window 312 of FIG. 3. Control Panel 518 contains a plurality of switches and display window 512. Display window 512 may contain a LCD, LED, plasma, CRT or other type of display. The elements of display window 512 are described in conjunction with FIGS. 11-14 below.

Main power switch 515 provides a main power cutoff for both remote control 211 as well as ceiling fan 206. If main power switch 515 is turned off for more than 10 minutes, remote control 211 may lose its memory and may have to be reprogrammed. In an alternate embodiment, a battery back-up (not shown) may be provided for the memory of remote control 515 in order to preserve the time setting and programming for longer periods of power loss.

Control panel 518 may be provided with a first row of switches comprising fan switch 521, light switch 522, and reversing switch 523. These three switches are used to control fan speed, fan direction, and light intensity manually, or may be used to program fan speed, fan direction, and light intensity for programmed operation. Control panel 518 may also be provided with an additional row of switches 528-531 for preprogrammed features such as auto-reverse and delay off. Control panel 518 may be provided with yet an additional row of switches comprising program switch 524, hour switch 525, minute switch 526, and auto/manual switch 527. Hour switch 525 and munute switch 526 are used in combination to set the clock and to program time intervals for timed operation. Program switch 524 is used to switch between regular operation and program mode. Auto/manual switch 527 is used to switch between automatic (programmed) operation and manual override mode. The detailed operation of each of the switches of FIG. 5 will be described in conjunction with FIGS. 11-14 below.

In the preferred embodiment, Switches 521-527 are push-button, momentary contact, spring-release type switches. Preferably, the switches are a low cost type membrane or rubber push button type. Main power switch 515 may be a slide or toggle type single pole, double throw switch rated to carry the entire load of ceiling fan 206 as well as power for remote control 211. Alternately, main power switch 515 could be a type of switch similar to switches 521-527 and used to switch power to a switching relay or triac which would in turn switch power to ceiling fan 206 and/or remote control 211.

BLOCK DIAGRAM

FIG. 6 shows a block diagram of the ceiling fan control of the present invention. Load line 602 from circuit main 670 terminates in a wall switch box (not shown) and connects to remote control 611. Switched load line 603 is connected from remote control 611 to fan mounted control 610. Neutral line 604 is connected directly from circuit main 670 to fan mounted control 610.

Remote control 611 contains power supply 671, transmitter microprocessor 672, display 612, main power switch 615, and control panel 618. Note that power supply 671 is connected in series with transmitter microprocessor 672 and fan mounted control 610 through switched load line 603. Power supply 671 draws power from switched load line 603, and produces a direct current (DC) output to provide power to transmitter microprocessor 672, control panel 618, and display 612. Main power switch 615 disconnects power from both remote control 611 and ceiling fan 206, as discussed in connection with FIG. 5 above. Display 612 may display the time of day, fan speed, fan direction, and light intensity information, along with programming information as will be discussed in connection with FIGS. 11-14 below. Control panel 618 contains switches 521-527 as discussed in connection with FIG. 5 above, for accepting control and programming inputs.

Transmitter microprocessor 672 may accept control and programming inputs from control panel 618 and subsequently drive display 612. Transmitter microprocessor 672 may also store information, such as program operations, and in addition may send signals to fan mounted ceiling control 610 modulated over the 60 Hz AC power signal on switched load line 603 as will be described in connection with FIG. 7 below.

Fan mounted control 610 comprises AC decoder 673, receiver microprocessor 674, power supply 675, fan driver circuit 676, and light driver circuit 677. Switched load line 603 passes from remote control 611 to fan mounted control 610 where it connects to power supply 675 and AC decoder 673. Power supply 675 may be a conventional power supply in the sense that it may be connected to both neutral line 604 and switched load line 603 through AC decoder 673. Power supply 675 supplies DC voltage to receiver microprocessor 674, AC decoder 673, fan driver 676, and light driver 677.

AC decoder 673 receives the 60 Hz AC power signal along with the modulated control signals from transmitter microprocessor 672 over switched load line 603. AC decoder 673 decodes the control signals sent from transmitter microprocessor 672 modulated on the 60 Hz power signal over switched load line 603 and transmits the decoded signals to receiver microprocessor 674. Receiver microprocessor 674 is programmed to interpret signals sent from transmitter microprocessor 672 and control fan motor 679 and light fixture 678 accordingly.

Transmitter microprocessor 672 and receiver microprocessor 674 may be any one of a number of microprocessors known in the art. In the preferred embodiment, the transmitter microprocessor 672 may comprise a NEC PD7502 and the receiver microprocessor 674 may comprise a National Panasonic MN1551.

Fan motor 679 is switched by fan driver 676. Fan driver 676 may be a series of triacs, typically three, one for each fan speed, along with a reversing relay. Receiver microprocessor 674 controls the triacs in fan driver 676 to switch on various windings in fan motor 679, or alternately control fan speed by switching a series of speed control capacitors into the circuit. Receiver microprocessor 674 may be programmed to control the reversing relay for reversing power to fan motor 679. When a reversing signal is received by receiver microprocessor 674, receiver microprocessor 674 will shut off all power to fan motor 679 for one second to allow the speed control capacitors to discharge, then switch the reversing relay and reapply power to fan motor 679. The time delay is necessary in order to prevent the stored charge in the speed control capacitors from arcing the contacts of the reversing relay.

In an alternate embodiment, fan driver 676 may comprise a variable speed control, typically by phase controlled triac, to provide an infinitely variable speed control for fan motor 679. In the preferred embodiment, a three speed control is used, as present low cost frequency inverters today tend to reshape the sinusoidal shape of the 60 Hz power signal and subsequently cause excessive fan noise.

Light Driver 677 may be silicon controlled rectifier (SCR) which provides an infinitely variable lighting intensity control (i.e.—dimmer) for light fixture 680. In alternate embodiments, light driver 677 may have a discrete series of lighting intensities (i.e.—low, medium and high) or may be a triac or relay used for a simple on/off control.

In the above embodiments, both transmitter microprocessor 672 and receiver microprocessor 674 are characterized as being microprocessors, however, it is envisioned that one or both of the microprocessors could be replaced with other types of controls, such as combinational logic circuits (i.e.—TTL). Further, the programming features are described above as being stored and executed in transmitter microprocessor 672 with receiving microprocessor 674 performing the switching and control operations. However, it is envisioned that programming commands may be transmitted directly to receiving microprocessor 674 and the programming stored and executed there. Further, it is envisioned that bidirectional communication between the transmitter microprocessor 672 and receiver microprocessor 674 may be used. Such bidirectional communication may be used for transmitting acknowledgment signals, service signals (i.e.—fan motor overheat, bulb burnt out, etc.), temperature signals, or other information from the receiver microprocessor 674 to the transmitter microprocessor 672.

DATA TRANSMISSION

FIG. 7 shows an example of signals transmitted between the transmitter microprocessor 672 and receiver microprocessor 674. A typical command signal 790 sent from the transmitter microprocessor 672 to the receiver microprocessor 674 may comprise a 7 bit digital signal. The first bit of each signal may always be a 1, while the next three bits may be the particular command code bits. The fifth bit may be a parity bit and would always be a 1. The last two bits may be each be 0, indicating the end of the coded signal. In this instance, only three bits are used for command signals, making a possible 2 3 combinations of bits, or a possible 8 commands. Additional commands may be used by adding additional bits to the command signal.

In a ceiling fan, however, there are a limited number of control signals that may be desirable. An example of such control signals may be:


Leave a Reply